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ELECTRO MAGNETIC FIELDS
Objectives:
e To introduce the concepts of electric field, magnetic field.
e Applications of electric and magnetic fields in the development of the theory for power
transmission lines and electrical machines.

UNIT — | Electrostatics:

Electrostatic Fields — Coulomb’s Law — Electric Field Intensity (EFI) — EFI due to a line and a surface
charge — Work done in moving a point charge in an electrostatic field — Electric Potential — Properties of
potential function — Potential gradient — Gauss’s law — Application of Gauss’s Law — Maxwell’s first
law, div ( D )=pv — Laplace’s and Poison’s equations .

UNIT - Il Dielectrics & Capacitance:

Behavior of conductors in an electric field — Conductors and Insulators —Dielectric boundary conditions
Capacitance of parallel plates — spherical co-axial capacitors. Current density — conduction and
Convection current densities — Ohm’s law in point form — Equation of continuity

UNIT — 11l Magneto Statics:

Static magnetic fields — Biot-Savart’s law — Magnetic field intensity (MFI) — MFI due to a straight
current carrying filament — MFI due to circular, square and solenoid current Carrying wire — Relation
between magnetic flux and magnetic flux density — Maxwell’s second Equation, div(B)=0, Ampere’s
Law & Applications: Ampere’s circuital law and its applications viz. Point form of Ampere’s circuital
law — Maxwell’s third equation, Curl (H)=Jc

UNIT — IV Force in Magnetic fields and Magnetic Potential:

Magnetic force Moving charges in a Magnetic field — Lorentz force equation.Self and Mutual
inductance— determination of self-inductance of a solenoid and torroid — energy stored and density in a
magnetic field.

UNIT -V Time Varying Fields:

Time varying fields — Faraday’s laws of electromagnetic induction — Its integral and point forms —
Maxwell’s fourth equation, Curl (E)=-dB/dt — Statically and Dynamically induced EMFs — Simple
problems -Modification of Maxwell’s equations for time varying fields — Displacement current

TEXT BOOKS:

1. “William H. Hayt& John. A. Buck”, “Engineering Electromagnetics” ,Mc. Graw-Hill Companies, 7th
Edition, 2009.
2. “Sadiku”, “Electromagnetic Fields”, Oxford Publications, 4th Edition, 2009.
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Course Outcomes: upon completion of course, student will be able to Apply vector calculus to static
electric — magnetic fields.

1. Compute the force, fields & Energy for different charge & current configurations & evaluate
capacitance and inductance.

2. Analyze Maxwell’s equation in different forms (Differential and integral) in Electrostatic, Magnetic
time varying fields.

3. Ability to solve the problems in different EM fields.

4. Abilityto Analyse moving charges on Magnetic fields.

5. Ability to Solve Electromagnetic Relation using Maxwell Formulae.



UNIT-I
Electrostatic Fields

Coulomb’s Law

Electric Field Intensity —Fields due to line and surface Charge Distributions
Work done in moving a point charge in an electrostatic field

Electrostatic Potential & Properties of potential function — Potential gradient
Gauss’s law — Application of Gauss’s Law

Maxwell’s first law

Divergence

Laplace’s and Poison’s equations — Solution of Laplace’s equation in one variable
Electric dipole — Dipole moment — potential and EFI due to an electric dipole
Torque on an Electric dipole in an electric field

Behavior of conductors in an electric field — Conductors and Insulators



Introduction:

The electric charge is a fundamental property of matter and charge exist in integral multiple of
electronic charge. Electrostatics can be defined as the study of electric charges at rest. Electric fields
have their sources in electric charges.

(Note: Almost all real electric fields vary to some extent with time. However, for many problems,
the field variation is slow and the field may be considered as static. For some other cases spatial
distribution is nearly same as for the static case even though the actual field may vary with time.
Such cases are termed as quasi-static.)

In this chapter we first study two fundamental laws governing the electrostatic fields, viz, (1)
Coulomb's Law and (2) Gauss's Law. Both these law have experimental basis. Coulomb's law is
applicable in finding electric field due to any charge distribution, Gauss's law is easier to use when

the distribution is symmetrical

Coulomb's Law :

Statement:

Coulomb's Law states that the force between two point charges Qland Q2 is directly proportional to
the product of the charges and inversely proportional to the square of the distance between them.
Point charge is a hypothetical charge located at a single point in space. It is an idealized model of a
particle having an electric charge.

Mathematically,
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Where k is the proportionality constant. And &

, Is called the permittivity of free space

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

Force F is in Newton’s (N)

(We are assuming the charges are in free space. Ifthe charges are any other dielectric medium, we

£= £E, E,

will use instead where “r is called the relative permittivity or the dielectric constant of the

medium).



Therefore......... AL R (1)
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As shown in the Figure 1 let the position vectors of the point charges Qland Q2 are given by " and

2 Let M represent the force on Q1 due to charge Q2.

F

Fig 1: Coulomb's Law
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The charges are separated by a distance of 1| . We define the unit vectors as
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12 can be defined as 1
Similarly the force on Q1 due to charge Q2 can be calculated and if 23 represents this force then we can
write 1= ~f

Force Due to ‘N ‘no.of point charges:

When we have a number of point charges, to determine the force on a particular charge due to all other

charges, we apply principle of superposition. If we have N number of charges Q1,Q>,. ........ Qn located

respectively at the points represented by the position vectors 1, |

charge Q located at ;is given by,
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Electric Field intensity:

The electric field intensity or the electric field strength at a point is defined as the force per unit charge.
That is

The electric field intensity E at a point r (observation point) due a point charge Q located at r (source

point) is given by:

E-= Q(r:r_ﬁz
dme, r—r'
S 5)
For a collection of N point charges Q1,Qz,......... Qw located at "1 ,"2 .....7¥. the electric field intensity at

point 7" is obtained as

s 1 L0F-7
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The expression (6) can be modified suitably to compute the electric filed due to a continuous

distribution of charges.

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as the

source region.

For an elementary charge dQ = o(r)dv’ , I.e. considering this charge as point charge, we can write the

field expression as:

T = df(r—r) _ plrdvir-—r’

471, |r—r'f 471, |:r"—:r*'|3



Source region

Fig 2: Continuous Volume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at the point P due to
this distribution of charges. Thus the expression for the electric field at P can be written as:

B0 - o (f"—f“i"?
1[4}‘1'&',:,.?" rf

Similar technique can be adopted when the charge distribution is in the form of a line charge density or a

surface charge density.
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Electric flux density:

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at a
particular point. The electric field depends on the material media in which the field is being considered.
The flux density vector is defined to be independent of the material media (as we'll see that it relates to
the charge that is producing it).For a linear isotropic medium under consideration; the flux density

vector is defined as:



Gauss's Law:

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total electric flux

through a closed surface is equal to the total charge enclosed by the surface.

Fig 3: Gauss's Law

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric constant .
The flux density at a distance r on a surface enclosing the charge is given by

D-c5-_2

AITr™ s (14)
decos & — 20
But #° , is the elementary solid angle subtended by the area &= at the location of Q.
.;fa,.rr=£ai‘§2
Therefore we can write 47

- gy ﬁﬂm -0

For a closed surface enclosing the charge, we can write

Which can seen to be same as what we have stated in the definition of Gauss's Law.

Application of Gauss's Law:

Gauss's law is particularly useful in computing Zor Dwhere the charge distribution hassome



symmetry. We shall illustrate the application of Gauss's Law with some examples.
1. An infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of determination of
the electric field produced by an infinite line charge of density (C/m. Let us consider a line charge
positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the line charge is assumed to be
infinitely long, the electric field will be of the form as shown in Fig. 4(b) (next slide).

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can write,
od =0 =<er§..:15= JEDE.dE+lEDE.dE+JEDE.dE
T e (15)

Considering the fact that the unit normal vector to areas S: and Szare perpendicular to the electric field,

the surface integrals for the top and bottom surfaces evaluates to zero. Hence we can write,
o = 5 B2

o

(b)

Fig 4: Infinite Line Charge



2. Infinite Sheet of Charge
As a second example of application of Gauss's theorem, we consider an infinite charged sheet covering
the x-z plane as shown in figure 5. Assuming a surface charge density of<s for the infinite surface

charge, if we consider a cylindrical volume having sides®s placed symmetrically as shown in figure 5,

we can write:

¢ D ds = 2Dts = o bs

=

F=_573

x

Fig 5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the infinite
plane of charge; electric lines of force on either side of the charge will be perpendicular to the sheet and
extend to infinity as parallel lines. As number of lines of force per unit area gives the strength of the
field, the field becomes independent of distance. For a finite charge sheet, the field will be a function of

distance.



3. Uniformly Charged Sphere
Let us consider a sphere of radius rO having a uniform volume charge density of rv C/m3. To determine

J—

L everywhere, inside and outside the sphere, we construct Gaussian surfaces of radius r < r0 and r >r0
as shown in Fig. 6 (a) and Fig. 6(b).

i

For the region ; the total enclosed charge will be

o -

(a) (b)
Fig 6: Uniformly Charged Sphere
By applying Gauss's theorem,

23 F-3

cj‘iﬁ-dé = [ [ Dr’sin8d6d¢ =4nr"D, = 0,

gele=n (29
Therefore
[— r -
D=—pa, D2rinm
e ———————— (20)

By applying Gauss's theorem,
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Electrostatic Potential:

In the previous sections we have seen how the electric field intensity due to a charge or a charge
distribution can be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of
another charge (or in other words in the field of other charge) experiences a force, the movement of the
charge represents energy exchange. Electrostatic potential is related to the work done in carrying a
charge from one point to the other in the presence of an electric field. Let us suppose that we wish to

move a positive test charge Ldfrom a point P to another point Q as shown in the Fig. 8.The force at
any point along its path would cause the particle to accelerate and move it out of the region if
unconstrained. Since we are dealing with an electrostatic case, a force equal to the negative of that

acting on the charge is to be applied while 24moves from P to Q. The work done by this external

agent in moving the charge by a distance ﬂié? given by:

-]
e
—

0

a

Fig 8: Movement of Test Charge in Electric Field

The negative sign accounts for the fact that work is done on the system by the external agent.

The potential difference between two points P and Q , VPQ, is defined as the work done per unit

charge, i.e.



It may be noted that in moving a charge from the initial point to the final point if the potential difference
IS positive, there is a gain in potential energy in the movement, external agent performs the work against
the field. If the sign of the potential difference is negative, work is done by the field.

We will see that the electrostatic system is conservative in that no net energy is exchanged if the test
charge is moved about a closed path, i.e. returning to its initial position. Further, the potential difference
between two points in an electrostatic field is a point function; it is independent of the path taken. The
potential difference is measured in Joules/Coulomb which is referred to as Volts.

Let us consider a point charge Q as shown in the Fig. 9.

/ )
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Fig 9: Electrostatic Potential calculation for a point charge

Further consider the two points A and B as shown in the Fig. 9. Considering the movement of a unit

positive test charge from B to A, we can write an expression for the potential difference as:

It is customary to choose the potential to be zero at infinity. Thus potential at any point (rA =r) due to a
point charge Q can be written as the amount of work done in bringing a unit positive charge from

infinity to that point (i.e. rB = 0).

Or, in other words,



Fig 10: Electrostatic Potential due a Displaced Charge

The potential at a point P becomes

V() = e

411, |r -
So far we have considered the potential due to point charges only. As any other type of charge
distribution can be considered to be consisting of point charges, the same basic ideas now can be

extended to other types of charge distribution also. Let us first consider N point charges Q1, Q2,. QN

—  —+ —_—

located at points with position vectors 1,2 ........ "¥ . The potential at a point having position vector r
can be written as:
Vir) = 41 T = T o
G L I e B | (30a)

OR

- 1 X Q.
Vir) = Ezr—q

T F—r
R R B (30b)

For continuous charge distribution, we replace point charges Qn by corresponding charge elements

Pl o Pads o Gydv depending on whether the charge distribution is linear, surface or a volume

charge distribution and the summation is replaced by an integral. With these modifications we canwrite:



e = Jp;(radf'
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For line charge,......cooovveee i (31)
VI: :| = !.‘GS |:,?" )fiﬁ'
J’T‘c"u |r r,
For surface charge, ...t L B (32)
v = — J":""f’" )dv
4, |r — 7,
For volume charge, ..o 2 (33)

It may be noted here that the primed coordinates represent the source coordinates and the unprimed
coordinates represent field point.
Further, in our discussion so far we have used the reference or zero potential at infinity. If any other

point is chosen as reference, we can write:

where C is a constant. In the same manner when potential is computed from a known electric field we

can write:

We have mentioned that electrostatic field is a conservative field; the work done in moving a charge
from one point to the other is independent of the path. Let us consider moving a charge from point P1 to
P2 in one path and then from point P2 back to P1 over a different path. If the work done on the two
paths were different, a net positive or negative amount of work would have been done when the body
returns to its original position P1. In a conservative field there is no mechanism for dissipating energy
corresponding to any positive work neither any source is present from which energy could be absorbed

in the case of negative work. Hence the question of different works in two paths is untenable; the work



must have to be independent of path and depends on the initial and final positions.
Since the potential difference is independent of the paths taken, VAB = - VBA , and over a closed path,

Vi Vs =3‘5§-.:f?=0
Applying Stokes's theorem, we can write:

TEdE:}WXE)'dE =0

Any vector field that satisfies is called an irrotational field.

From our definition of potential, we can write

avr = s g - T4
dx Ay dx

W+ 24 + 24 | (ana, + dva, +ded,) = -F-di
ix e iz
Vi di=-E-di (40)

from which we obtain,

From the foregoing discussions we observe that the electric field strength at any point is the negative of

the potential gradient at any point, negative sign shows that idirected from higher to lower values of

¥ . This gives us another method of computing the electric field , i. e. if we know the potential function,
the electric field may be computed. We may note here that that one scalar functiéh contain all the
information that three components of&arry, the same is possible because of the fact that three

components of E are interrelated bythe relation ¥ * &

Equipotential Surfaces
An equipotential surface refers to a surface where the potential is constant. The intersection of an
equipotential surface with an plane surface results into a path called an equipotential line. No work is

done in moving a charge from one point to the other along an equipotential line or surface.



In figure 12, the dashes lines show the equipotential lines for a positive point charge. By symmetry, the
equipotential surfaces are spherical surfaces and the equipotential lines are circles. The solid lines show
the flux lines or electric lines of force.

Fig 12: Equipotential Lines for a Positive Point Charge
Michael Faraday as a way of visualizing electric fields introduced flux lines. It may be seen that the

electric flux lines and the equipotential lines are normal to each other. In order to plot the equipotential

cos &
lines for an electric dipole, we observe that for a given Q and d, a constant V requires that * isa

r

constant. From this we can write © ~“V59%& {5 pe the equation for an equipotential surface and a

family of surfaces can be generated for various values of cv.When plotted in 2-D this would give
equipotential lines.

To determine the equation for the electric field lines, we note that field lines represent the direction of E
in space. Therefore,

dl = kE |isaconstant ........cccooveveeeeereeeneeeenn (42)

Gdr + rd@h, + 4 sin @ = k(3,E, + 4,8, +d,8,) = di

For the dipole under consideration :’%’ and therefore we can write,
i _ ra 8
E?‘ Eﬂ

dr _2cos8d8 _ 2d(sin &)
r i & e (44)




Work done in moving a point charge in an electrostatic field:

We have stated that the electric potential at a point in an electric field is the amount of work required to
bring a unit positive charge from infinity (reference of zero potential) to that point. To determine the
energy that is present in an assembly of charges, let us first determine the amount of work required to
assemble them. Let us consider a number of discrete charges Q1, Q2,. , QN are brought from infinity
to their present position one by one. Since initially there is no field present, the amount of work done in
bring Q1 is zero. Q2 is brought in the presence of the field of Q1, the work done W1= Q2V21 where
V21 is the potential at the location of Q2 due to Q1. Proceeding in this manner, we can write, the total

work done . s F Vs *P@u) v P Ul o ) (45)
Had the charges been brought in the reverse order,
W=Vl +o PRt + {HN—EIN—IJQN—E + HN—E WQN—Ej + HN—IWQN—I
................ (46)
Therefore,

Here VIJ represent voltage at the Ith charge location due to Jth charge. Therefore,

A7 1 i
EW = P?_Q]_ + o + VNQN = zP}QI W - EZP}QI
Jal Fa

where “¥ is the volume charge density and V represents the potential function.

Since, & =V D

W=%v(?-5)wv

, We can write

V.FLD) = D VY VY D sing the vector identity,



, We can write

1 - =
W = 5!“(?_(@) —D-'W) dv

1 =~ 1
=—q|VDds—-—[| D VI )d
2(]3( Jds 2! ( o (51)
l?(vﬁ)_d&“ 1 1
29 , for point charges, since V variesas # and D varies as * | the term V

In the expression
1 1

D varies as ” while the area varies as r2. Hence the integral termvaries at least as r and the as

surface becomes large (i.e. ¥ =% ) the integral term tends to zero.

Thus the equation for W reduces to
1 = 1 == 1
W = —EJ‘(D.T Vv = EJ(D.E}d - EJ(EE:‘ v = wadv

1 o2
W, =— &
2 , Is called the energy density in the electrostatic field.

Maxwell’s first law:

Statement:The following Electrostatic Field equations will be developed in this section:

Integral form Differential forms
ﬁD-du = j,r_?a'v. VeD=p.
Surface Volume div b= a

Maxwell’s first equation is based on Gauss’ law of electrostatics published in 1832, wherein Gauss
established the relationship between static electric charges and their accompanying static fields.

The above integral equation states that the electric flux through a closed surface area is equal to the total
charge enclosed.



The differential form of the equation states that the divergence or outward flow of electric flux froma
point is equal to the volume charge density at that point.

Divergence:

The divergence represents the volume density of the outward fluxof a vector field from an infinitesimal
volume around a given point.

The following properties can all be derived from the ordinary differentiation rules of calculus. Most
importantly, the divergence is a linear operator, i.e.

div(aF + bG) = adivF + bdivG
for all vector fields F and G and all real numbers a and b.
There is a product rule of the following type: if ¢ is a scalar-valued function and F is a vector field, then
div(eF) = grad¢ - F + ¢ divF,
or in more suggestive notation
V- (¢F) = (Vp)-F +¢(V-F).

Another product rule for the cross product of two vector fields F and G in three dimensions involves
the curl and reads as follows:

div(F x G) = curlF- G — F - curl G,
or
V- FxG)=(VxF)-G-F-(VxG).
The Laplacian of a scalar field is the divergence of the field's gradient:

div(V) = Agp.
The divergence of the curl of any vector field (in three dimensions) is equal to zero:

V- (VxF)=0

Poisson’s and Laplace’s Equations:
For electrostatic field, we have seen that

Form the above two equations we can write

Ve (eE) =V (- = g,
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Using vector identity we can write, .27 " 2. F Y YE= 8, (55)

For a simple homogeneous medium, £ is constant and ¥&=10 _ Therefore,

VYV =V =-2

This equation is known as Poisson’s equation. Here we have introduced a new operator v , (del
square), called the Laplacian operator. In Cartesian coordinates,

VI =V = (—a +iay+iaj BV"K W ) BVAK
ax e dz ax thy i (57)

Therefore, in Cartesian coordinates, Poisson equation can be written as:

fv+fv+fv=_g

A A E o (58)
In cylindrical coordinates,
2
)
agt &t L (59)

In spherical polar coordinate system,

Vi =

15 . B 1 a8 a8 1 8%
Pt == |t
P ar dr ] o anf 38 38 ] ran8ag (60)

V=0 e (61)
Which is known as Laplace’s equation.
Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic field problems
where only the electrostatic conditions (potential and charge) at some boundaries are known and
solution of electric field and potential is to be found hroughout the volume. We shall consider such

applications in the section where we deal with boundary value problems.

Solutions to Laplace's Equation in CartesianCoordinates:

Having investigated some general properties of solutions to Poisson's equation, it is now appropriate to
study specific methods of solution to Laplace's equation subject to boundary conditions. Exemplified by
this and the next section are three standard steps often used in representing EQS fields. First, Laplace's
equation is set up in the coordinate system in which the boundary surfaces are coordinate surfaces. Then,



the partial differential equation is reduced to a set of ordinary differential equations by separation of
variables. In this way, an infinite set of solutions is generated. Finally, the boundary conditions are
satisfied by superimposing the solutions found by separation of variables.

In this section, solutions are derived that are natural if boundary conditions are stated along coordinate
surfaces of a Cartesian coordinate system. It is assumed that the fields depend on only two
coordinates, x and y, so that Laplace's equation is (Table I)

o P
Hr? + 392
This is a partial differential equation in two independent variables. One time-honored method of
mathematics is to reduce a new problem to a problem previously solved. Here the process of finding
solutions to the partial differential equation is reduced to one of finding solutions to ordinary differential
equations. This is accomplished by the method of separation of variables. It consists of assuming
solutions with the special space dependence

Q(z,y) = X(z)Y(y) (2]

In (2), X is assumed to be a function of x alone and Y is a function of y alone. If need be, a general space
dependence is then recovered by superposition of these special solutions. Substitution of (2) into (1) and
division by fen gives

=0 1)

1 dQX(x):_ 1 d*Y(y) 3)
X(z) daz* Yiy) dy’

Total derivative symbols are used because the respective functions X and Y are by definition only
functions of x and y.

In (3) we now have on the left-hand side a function of x alone, on the right-hand sidea function
of y alone. The equation can be satisfied independent of x and y only if each of these expressions is
constant. We denote this "separation” constant by k?, and it follows that

EX

— kX 4
— (4)
and
o -

S =K%Y (5)
dy”

These equations have the solutions

X r~coskz or sin bz ()
Y ~ cosh &y or sinh ky (7)



Ifk = 0, the solutions degenerate into

X ~ constant oT T 8
Y ~ constant or U Qj

The product solutions, (2), are summarized in the first four rows of Table 5.4.1. Those in the right-hand
column are simply those of the middle column with the roles of x and y interchanged. Generally, we will
leave the prime off the k' in writing these solutions. Exponentials are also solutions to (7). These,
sometimes more convenient, solutions are summarized in the last four rows of the table.

Electric dipole:

The name given to two point charges of equal magnitude and opposite sign, separated by a distance
which is small compared to the distance to the point P, at which we want to know the electric and
potential fields

Dipole moment:
A stronger mathematical definition is to use vector algebra, since a quantity with magnitude and
direction, like the dipole moment of two point charges, can be expressed in vector form

p=qd
Where d is the displacement vectorpointing fromthe negative charge to the positive charge. The electric
dipole moment vector p also points from the negative charge to the positive charge.

EFI due to an electric dipole:

To calculate electric field created by a dipole on the axial line ( onthe same line joining the two charges),

. Allthe measurement ofdistancesareto be takenfromthecentre(O).
. Let thedistancebetweenO to +g and O to —qbe ‘I’. So, total lengthbetween +q and —q will be <21°.
. Takea point ‘p’onthe axial line at thedistance ‘r’ fromthecentre as shown in figure.

2ql=Pp — *

-q 21 +

(r+1


https://en.wikipedia.org/wiki/Vector_algebra
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Now, we wish to calculate electric field at point ‘P’.

By using the formula for electric field due to point charge,

+1 q
Electric field due to +gq = ——
A1 (r- 1P

The distance between (P and +qg) = ()

-1 [
Electric field dueto-qg = ——

Arreg (r+ 17

The distance between (F and-g) =({r+1)
(Electric field due to +q will be positve and electric field due ta- g will be negative)

Since electric field is a wector quartity =o, the net electric field wil be the wector additon of the tea.

So, the net electric field E = B4 + B2

1 q 1 q
E= -

drrgy (r-02  dmrgg (r+ 1)




q 1 1

E= [ - 1
amey (r-I2 (r+IP
{On soking the eguation we get -
q (r+)-@r-1f
= [ 1
drey (r-12(r+ 2
q 4r
E=— wene(1)
drrgy (P2 -13)2
Wye knowy that the dipole morment or effectiveness of dipole (P is given by —
P=2ql
Therefare, putting this value in egi 1), we get
1 2Pr
E=— wenel2)
drrgy (P2 -19)?2

Certain assumptions are made based on this equation —

Since, the dipole is very small so 'l is also very small as compared to the distance '



50, on neglecting v with respect to 1 we get -

1 2Pr

E= —— — (fromeq(2))
411'!1} |4

MNote — Electric field on the axal line of dipole iz not 0. ks magnitude is resultant as exprezsed above.

Torque:

An object with an electric dipole moment is subject to a torque T when placed in an external electric
field. The torque tends to align the dipole with the field. A dipole aligned parallel to an electric field has
lower potential energy than a dipole making some angle with it. For a spatially uniform electric field E,
the torque is given by

T=pxE,

where p is the dipole moment, and the symbol "x" refers to the vector cross product. The field vector and
the dipole vector define a plane, and the torque is directed normal to that plane with the direction given
by the right-hand rule.

A dipole oriented co- or anti-parallel to the direction in which a non-uniform electric field is increasing
(gradient of the field) will experience a torque, as well as a force in the direction of its dipole moment. It
can be shown that this force will always be parallel to the dipole moment regardless of co- or anti-
parallel orientation of the dipole.


https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Potential_energy
https://en.wikipedia.org/wiki/Vector_cross_product
https://en.wikipedia.org/wiki/Right-hand_rule

Torque on an Electric dipole in an electric field:

Let us assume an electric dipole is placed in a uniform magnetic field as shown in figure. Each charge of
dipole experience a force gE in electric field. Since points of action of these forces are different, these equal
and anti paralel forces give rise to a couple that rotate the dipale and make the dipale to align in the direction
of field.

The torque 1 experienced by the dipole is (qE)=(2dsinB), where 2d is the length of dipole and 8 is the angle
between dipole and field direction.

T = gEx2dsing = (gx2d)=xEsinf = pxEsind =p x E

we have used the definition of dipole moment p = g=2d in the above equation. p and E are vectors
representing the dipale maoment and Electric field respectively.
Last step shown above is the cross product of two vectaors



UNIT - 11
Dielectrics & Capacitance

Behavior of conductors in an electric field — Conductors and Insulators
Electric field inside a dielectric material

polarization

Dielectric — Conductor boundary conditions

Dielectric — Dielectric boundary conditions

Capacitance-Capacitance of parallel plates — spherical co-axial capacitors with composite
dielectrics

Energy stored and energy density in a static electric field

Current density

conduction and Convection current densities

Ohm’s law in point form

Equation of continuity



Behavior of conductors in an electric field:

Conductors:

Materials in which it is easy for charges to move around. We will discuss conductors in some depth
when we discuss currents; for now, we will just summarize a few of their properties. Among the best
conductors are metals — silver, gold, copper, aluminum, etc. The atoms of these metals form a
crystalline structure in which electrons can easily hop around from atom to atom. Although a chunk of
metal is neutral overall, we can visualize it as being made of lots of positive charges that are nailed in
place, paired up with lots of negative charges (electrons) that are free to move around. In isolation, the
negative charges will sit close to the positive charges, so that the metal is not only neutral overall, but
also largely neutral everywhere (no local excess of positive or negative charge). Under the influence of
some external field, the electrons are free to move around.

MMaterial Resistivity (£2-m) Resistivity (sec)

Silver 1.6 % 10~® 1.8 » 10~
Copper 1.7 % 1078 1.9 x 10717
Gold 2.4 x 107# 2.6 x 1077
[ron 1.0 % 1077 1.1 x 10716
Sea water 0.2 2.2 x 10710
Polvethylene 2.0 x 101 220
Glass ~ 1012 ~ 103
Fused quartz 7.5 % 107 8.3 x 10°

Electric fields and conductors For the rest of this lecture, we will assume that conductors are materials
that have an infinite supply of charges that are free to move around. (This of course just an idealization;
but, it turns out to be an extremely good one. Real conductors in fact behave very similar to this limit.)
Fromthis, we can deduce a few important facts about conductors and electrostatic fields

* There is no electric field inside a conductor: Why? Suppose we bring a plus charge near a conductor.
For a very short moment, there will be an electric field inside the conductor. However, this field will act
on and move the electrons, which are free to move about. The electrons will move close to the plus
charge, leaving net positive charge behind. The conductor’s charges will continue to move until the
“external” E~ -field is cancelled out — at that point there is no longer an E~ -field to move them, so
they staystill.

 Net charge can only reside on the surface of a conductor:This is easily proved with Gauss’s law:
make a little Gaussian surface that is totally contained inside the conductor. Since there is no E~ -field
inside the conductor, H E~ - dA~ is clearly zero for your surface. Since that is equal to the charge the
surface contains, there can be no charge. We will discuss the charge on the conductor’s surface in a
moment.



e The electric potential within a conductor is constant. Proof: the potential
difference between any two points @ and b inside the conductor is

O —=@a = = [E - ds
0

since E = ( inside the conductor. Hence, for any two points a and b inside the
conductor. ¢, = ¢,.
» Any external electric field lines are perpendicular to the surface: Another way to put this is that
there is no component of electric field that is tangent to the surface. We prove this by contradiction:
suppose that a component of the E~ -field were tangent to the surface. If that were the case, then charges
would flow along the surface. They would continue to flow until there was no longer any tangential
component to the E~ -field. Hence, this situation cannot exist: even if it exists momentarily, it will
rapidly (within 10—17 seconds or so) correct itself.
* The conductor’s surface is an equipotential: This follows from the fact that the E~ -field is
perpendicular to the surface. We do a line integral of E~ on the surface; the path is perpendicular to the
field; so the difference in potential between any two points on the surface is zero.

Insulators:

Insulators, on the other hand, are substances that have exactly the opposite effect on the flow of
electrons. These substances impede the free flow of electrons, thereby inhibiting the flow of electrical
current. Insulators contain atoms that hold on to their electrons tightly which restrict the flow of
electrons from one atom to another. Because of the tightly bound electrons, they are not able to roam
around freely. In simple terms, substances that prevent the flow of current are insulators. The materials
have such low conductivity that the flow of current is almost negligible, thus they are commonly used to
protect us from dangerous effects of electricity.

Some common examples of insulators are glass, plastic, ceramics, paper, rubber, etc. The flow of
current in electronic circuits is not static and voltage can be quite high at times, which makes it a little
vulnerable. Sometimes the voltage is high enough to cause electric current to flow through materials that
are not even considered as good conductors of electricity. This can cause electric shock because human
body is also a good conductor of electricity. Therefore, electric wires are coated with rubber which acts
as an insulator which in turn protects us from the conductor inside.



Conductors vs. Insulators: Comparison Chart

Conductors

Zonductors are materials that allow free flow of
slectrons from one atom to another.

Zonductors conduct electricity because of the free
zlectrons present in thern.

These materials can pass electricity through them.
Atoms are not able to heold onto their electrons
[ightly.

Materials that are cood conductors generally have
aigh conductivity.

WMosztly metals are good conductors such as copper,
aluminum, silver, iron, ete.

Insulators

Insulators wor't allow free of electrons from one
atom to another.

Insulators insulate electricity because of the tightly
bound electrons present within atoms.

Insulating materials cannot pass electric current
through thern.

Atorms have tightly bound electrons thereby unable
to transfer electrical energy weell.

Good insulating materials usually have low
conductivity,

Commeoen insulators include rubber, ,
plastic, asphalt, pure water, etc.



Electric field inside a dielectric material — polarization:
DIELECTRIC CONSTANT:

» In general, all insulators are also called as dielectrics.

» In perfect dielectrics, there are no free charges existing.

» Consider an atom of the dielectric as consisting of a negative charge '-Q’ and positive
charge "+, as shown in figure below:

Fig: Atom of an Dielectric

. tive charge is displaced from its
e y the force F+=Q £ while the negative
€ by force F=QE.
E
_
E

Fig: Atom when E field is applied
= A dipole resulis from the displacement of the charges and the dielectric is said 1o be

polarized.
* In the polarized state, the electron cloud is distorted by the applied electric field E.



Q) ——> | 3]
ket ——]

Fig: Electric Dipole

The dipole moment 15 given as,

P=0d

Where d is the distance vector from —Q to +Q of the dipole as shown in above

figure.

Sum of all the dipole moments gives the net electric field

The measure of intensity of the polarization 5 given by polarization P (in

coulombs/m’)

Polarization P is the dipole moment per unit volume of the dielectric; ie

_ ooV

Per 0
AV

Where P is dipole moment,

P is polarization

N iz total no of electrons,

When there 13 no polarization, then the clectric flux density Dis given as,

D =g, E===x=(l)

S Bal

€y
In the presence of polarization, we have,
- oD

1 g
NGy E= B—F—-———-—{Z}
If polarization P and electric field intensity E are in same direction, then P can be
expressed as,
P=e, X E—=ec(i)
Where X, is known as the electric susceptibility of the material.
Substituting eg. (3) in eq(2) we get



D=e,E+P
=g, E+ £, X‘E
D=¢,(1+X,)E
D=c,.c, E
=M=k
ectric
=€ =1+X, = =, —(4)
En

Where & is permittivity of free space = ;0

F -"m

& called the dielectric constant ar relative permitlivity.

¢  The diglectric constant (or relative permittivity). & 18 the ratio of the permittivity of
the dielectric to that of free space.
The dielectric constant & and X, are dimension less.
&, is always greater than or equal to unity and &,~1 for free space and non-dielectric
materials (such as metals).

* The minimum value of the electric field at which the dielectric breakdown occurs s
called the diclectric strength of the dielectric material,

o The diglectric strength 18 the maximum electric field that a dielectric can tolerate or
withstand without breakdown.

Boundary Conditions:

Boundary conditions is the condition that the field must satisfy at the interface separating the

media

* The boundary conditions at an interface separating:
— Dielectric and dielectric
— Conductor and dielectric
— Conductor and free space

* To determine the boundary conditions, we need to use Maxwell’s equation:

fE-dl=O



And

fED *dS = Qene
«  Decomposing the electric field intensity E into orthogonal components
E=E +E,
where  and are, respectively, the tangential and normal components of E to the interface of interest
1. Dielectric — dielectric boundary conditions:

E1and E2 in media 1 and 2 can be decomposed as
E, =E, +E,
E2 = E'Zt + E2n

Applying Maxwell’s equation to the closed path ( abcda )

0=E, Aw - E, = — g, 5% _ i AR AR (D)
2 ) 2 2



As Ah-> 0, equation ( 1) becomes

is said to be continuous across the boundary

+ Since D ==+, eq. (2) can be written as

1t Dz:
£ i ~ En
Or
Dlr _ DZz
€ L5

is said to be discontinuous across the interface

Applying the Gauss’s law , we have

) ) Tu TaAd = Uene
Allowing Ah—> gives

AQ = pSAS = DmAS - DznAS

(2)



Or

D\, — D,, = ps

If no free charges exist at the interface , so

1
Dln=D2n M

is continuous across the interface , since = ,eq. (1) can be written as

8IEIn = 82E2n
The normal component of ( E) is discontinuous at the boundary

2. Conductor —dielectric boundary conditions:

Applying Maxwell’s equation to the closed path (‘abcda )



E=0

Similarly, by applying the Gauss’s law to the pillbox and letting Ah — 0,we have

AQ=D,-AS -0 AS



because D = =0 inside the conductor, so

Or

Thus under static conditions, the following conclusions can be made about a perfect conductor:
1. No electric field may exist within a conductor

g =0, E=0

2. Since E =-_ =0, there can be no potential difference any two points in theconductor

3. The electric field E can be external to the conductor and normal to its surface

Dr = Soerl = O, Dn = 8oer‘n = Ps




3. Conductor — free space boundary conditions:

This is a special case of the conductor — dielectric condition. Free space is a special dielectric
for which

- =

g =1

Thus the boundary conditions are

Dt = 80Et = O’ Dn = soEn = Ps

Capacitance and Capacitors:
We have already stated that a conductor in an electrostatic field is an Equipotential body and any
charge given to such conductor will distribute themselves in such a manner that electric field

inside the conductor vanishes. If an additional amount of charge is supplied to an isolated

conductor at a given potential, this additional charge will increase the surface charge density Py

- 1 Jpsds'
dme, d r

. Since the potential of the conductor is given by , the potential of the



0 e

conductor will also increase maintaining the ratio same F. Thus we can write v where the
constant of proportionality C is called the capacitance of the isolated conductor. SI unit of
capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be seen that if V=1, C
= Q. Thus capacity of an isolated conductor can also be defined as the amount of charge in
Coulomb required to raise the potential of the conductor by 1 Volt.

Of considerable interest in practice is a capacitor that consists of two (or more) conductors
carrying equal and opposite charges and separated by some dielectric media or free space. The
conductors may have arbitrary shapes. A two-conductor capacitor is shown in figure below.

Fig : Capacitance and Capacitors

When a d-c voltage source is connected between the conductors, a charge transfer occurs which
results into a positive charge on one conductor and negative charge on the other conductor. The
conductors are equipotential surfaces and the field lines are perpendicular to the conductor
surface. IfV is the mean potential difference between the conductors, the capacitance is given by
o2

¥ . Capacitance of a capacitor depends on the geometry of the conductor and the
permittivity of the medium between them and does not depend on the charge or potential

difference between conductors. The capacitance can be computed by assuming Q(at the same

time -Q on the other conductor), first determining £ using Gauss’s theorem and then

.y =-[Edl . . .
determining .[ . We illustrate this procedure by taking the example of a parallel plate

capacitor.

Example: Parallel plate capacitor



Gausian
Surface

g

Fig : Parallel Plate Capacitor
For the parallel plate capacitor shown in the figure about, let each plate has area A and a distance
h separates the plates. A dielectric of permittivity £ fills the region between the plates. The
electric field lines are confined between the plates. We ignore the flux fringing at the edges of

the plates and charges are assumed to be uniformly distributed over the conducting plates with

-2
densities © and- &, "7 A,
H= & = E
By Gauss’s theorem we can write,..........E...4A6 ..o, (1)

As we have assumed ©* to be uniformand fringing of field is neglected, we see that E is
-2
constant in the region between the plates and therefore, we can write £4 . Thus, for a

parallel plate capacitor we have,

Series and parallel Connection of capacitors

Capacitors are connected in various manners in electrical circuits; series and parallel connections
are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such
connections.

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can

write,



E=L=i+i
¢ Cu O O (1)
V; VZ
Clgs
o %
L |
| | |
- e
o o 0 o
+ N +
g ¥

Fig 1.: Series Connection of Capacitors

]
| |
1 |
+QJ? _Q‘F Ceqj
A
(95
+0f -0 w0 -2
0 o
+ -
| 1
||
+y7-

Fig 2: Parallel Connection of Capacitors

The same approach may be extended to more than two capacitors connected in series.
Parallel Case: For the parallel case, the voltages across the capacitors are the same.
The total charge ¥ =% *& =G + 0

Therefore, e E ...................................................................... (2)



Energy Stored in Capacitor:

While capacitor is connected across a battery, charges come from the battery and get stored in
the capacitor plates. But this process of energy storing is step by step only.At the very beginning,
capacitor does not have any charge or potential. i.e. V=0 voltsand q =0 C.

+ [ CAPACITOR
+ - + +

| V
BATTERY|

Now at the time of switching, full battery voltage will fall across the capacitor. A positive charge

(g) will come to the positive plate of the capacitor, but there is no work done for this first charge
(q) to come to the positive plate of the capacitor from the battery. It is because of the capacitor
does not have own voltage across its plates, rather the initial voltage is due to the battery. First
charge grows little amount of voltage across the capacitor plates, and then second positive charge
will come to the positive plate of the capacitor, but gets repealed by the first charge. As the
battery voltage is more than the capacitor voltage then this second charge will be stored in the
positive plate.

At that condition a little amount of work is to be done to store second charge in the
capacitor. Again for the third charge, same phenomenon will appear. Gradually charges will
come to be stored in the capacitor against pre-stored charges and their little amount of work done

grows up.

dv

b=—G


https://www.electrical4u.com/what-is-capacitor/
https://www.electrical4u.com/battery-working-principle-of-batteries/
https://www.electrical4u.com/voltage-or-electric-potential-difference/
https://www.electrical4u.com/what-is-capacitor/
https://www.electrical4u.com/battery-working-principle-of-batteries/
https://www.electrical4u.com/charging-a-capacitor/
https://www.electrical4u.com/charging-a-capacitor/

W Q
f dW = / V.dQ
0 0

Q 2
q q 1 Q 1 5
W = —. = = W=— — W=—-.C
/E; c dq, |asC V] Or, 50 Or, 5 CV
1 1
Wi =V.Q = 5.Q.V=5.Q.V

This half energy from total amount of energy goes to the capacitor and rest half of energy

automatically gets lost from the battery and it should be kept in mind always.

Continuity Equation and Kirchhoff’s Current Law

Let us consider a volume V bounded by a surface S. A net charge Q exists within this region. If a
net current | flows across the surface out of this region, from the principle of conservation of
charge this current can be equated to the time rate of decrease of charge within this volume.
Similarly, if a net current flows into the region, the charge in the volume must increase at a rate

equal to the current. Thus we can write,

;o0
FE e, 3)
ff..;f;= _.;ri lpd
or‘t ................................ 4
Applying divergence theorem we can write,
Jv.ffdv -2
..................... (5)

It may be noted that, since” in general may be a function of space and time, partial derivatives
are used. Further, the equation holds regardless of the choice of volume V , the integrands must
be equal.

Therefore we can write,

vi--22


https://www.electrical4u.com/what-is-capacitor/

The equation (6) is called the continuity equation, which relates the divergence of current density
vector to the rate of change of charge density at a point.

For steady current flowing in a region, we have

Considering a region bounded by a closed surface,

— =+

Jds=0
f (8)

which can be written as,

S
T, (9)

when we consider the close surface essentially encloses a junction of an electrical circuit.
The above equation is the Kirchhoff’s current law of circuit theory, which states that

algebraicsum of all the currents flowing out of a junction in an electric circuit, is zero.



Convention and conduction current:

¢ The electric current is generally caused by the motion of electric charges.
e The current through a given area is the electric charge passing through the area per unit

time. i.e
{
I = £ _____ 1)
dr
s Thus, in a current of one ampere, charge is being transferred at a rate of one coulomb per
second.

¢ Let consider, the current density J . If current Al flows through a surface AS, then the

current density J is given as,

e  The current density is assumed to be perpendicular to the surface
e [fthe current density is not normal to the surface, then

AE = Tk e (3)
e Thus, the total current flowing through a surface *S’ is
I= J‘ 6. —— (4)

s Depending on how ‘1" is produced, there are different kinds of current densities such as,
v" Convection current density
¥" Conduction current density
¥" Displacement current density

¢ We will discuss about convection and conduction densities.
s The equation (4) can be applied to any Kind of current density.

Convection current Density:
Convection current, which is different from conduction current, does not involve
conductors and consequently does not satisfy Ohm’s law.

e This type of current occurs when current flows through an insulating medium such as
liquid, rarefied gas, or a vacuum.

s For example, a beam of electrons in a vacuum tube can be considered as convection
current.

e Consider a filament as shown in figure below.
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Fig: Current in a filament

e Ifthere is a flow of charge, of density £,, at velocity u = ay.a v, then the current through
filament 15 given as,
i
From (1) = Af = A_—Q = f,,Asd—[x- AQ = [ AS.AI]
Lt At
P11 (— (5)
e  The current density at a given point is the current through a unit normal area at that point,
e  The current density “J," along the y-direction is given as,
J, = Al
AS
Ad
Fram (5),—= f uy
( AT S

~J, = Ly
Henee, in general,
J=fu————— ()

e The current "I" 15 the convection current and 17 is the convection current density in (A/m’)

Conduction current Density:

e The conduction current to flow requires a conductor.

o  The conductor has large amount of free clectrons that provide conduction current due to an
applied clectric ficld.

o When an electric ficld E is applied, the force on an electron with charge *-e” is given as,

» Since the electron s not in free space, it will not under the influence of the electric field.



Ohm’s law in point form:

¢  Rather, it suffers constant collision with the atomic lattice and drifts from one atom to
another,

s [fthe electron with mass ‘m” is moving in an electric field E with an average drift velocity
u , according to Newton's law, the average charge in momentum of the free lectron must
match the applied force, Thus,

e uE
T
ar
ol
—

Where T is the average lime interval between collisions.

s [fthere are 'n’ electrons per unit volume, the electronic charge density is given by,
f,= -ne

o  Thus, the conduction current density is,

2

Where 6= . 15 the conductivity of the conductor.

m
¢ The above relatienship in equation (%) known as the point form of Ohm’s law.



0 I O i R B 4

UNIT — 111
Magneto Statics

Biot-Savart’s law
Magpnetic field intensity (MFI)

MFI due to a straight current carrying filament
MFI due to circular, square and solenoid current Carrying wire

Relation between magnetic flux and magnetic flux density

Maxwell’s second Equation, div(B)=0,

Ampere’s circuital law and its applications viz. MFI due to an infinite sheet of
current and a long current carrying filament

Point form of Ampere’s circuital law

Maxwell’s third equation, Curl (H)=Jc



Introduction:

In previous chapters we have seen that an electrostatic field is produced by static or stationary
charges. The relationship of the steady magnetic field to its sources is much more complicated.
The source of steady magnetic field may be a permanent magnet, a direct current or an electric
field changing with time. In this chapter we shall mainly consider the magnetic field produced by
a direct current. The magnetic field produced due to time varying electric field will be discussed
later. Historically, the link between the electric and magnetic field was established Oersted in
1820. Ampere and others extended the investigation of magnetic effect of electricity . There are

two major laws governing the magneto static fields are:

Biot-Savart Law:
Usually, the magnetic field intensity is represented by the vector . It is customary to represent
the direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign

depending on whether the field (or current) is out of or into the page as shown in Fig. 1.

lo e

Fig. 1: Representation of magnetic field (or current)

Biot- Savart Law
This law relates the magnetic field intensity dH produced at a point due to a differential current

element ! as shown in Fig. 2.

Fig. 2: Magnetic field intensity due to a current element

The magnetic field intensity /7 at P can be written as,



= _Idixd, IR

dH == .

4R AR (1a)
S = fdfﬂ‘z;zcr

ATET (1b)

R=[R| . _ :

Where | | is the distance of the current element fromthe point P.

Similar to different charge distributions, we can have different current distribution such as line
current, surface current and volume current. These different types of current densities are shown

in Fig. 3.

dl _rfdv
da- :
Vi

Fig. 3: Different types of current distributions
By denoting the surface current density as K (in amp/m) and volume current density as J (in

amp/m2) we can write:

idi =Kds = Jav @)

( It may be noted that { = Kdw = Jda )
Employing Biot-Savart Law, we can now express the magnetic field intensity H. In terms of

these current distributions.

5 def <X
AR for line current..........cocoveveveae... (3a)
— +>{_F
T - JﬁijRER
s for surface current.................... (3b)
—_— T X_.-
S| Jj;;
PO, for volume current ................... (3¢)



MFI due to a straight current carrying filament:

Consider an infinitely long conductor AB through which current I flows. Let P be any point at a
distance a from the centre of conductor. Consider dl be the small current carrying element at
point ¢ at a distance r from point p. a be the angle between r and dl. 1 be the distance between
centre of the coil and elementary length dl. From biot-savart law, magnetic field due to current

carrying element dlat point P is

u= Idlsina
2

T 4m orz ©
a
from fig,sina = - = cost

a
————— (ii)
again,tanf = 7
dl = asec’8df — — — — — — (iii)

T:
cos@

from above three equations

p= la sec’ 8d8 cos@

db

41 @ 2
(casﬂ}
u= Ia sec? 8d8 cos@

2
= @? cos“ 8

db

= Icos8d@

dB
47 a




Tota magnetic field due to stra _'gh[ current Carrying Conauctor 15

%2 - Icos6do
p- | L2
p,4m @

. 6
B = a I—j cosBdf
dmal_g

=] g
_K —[sind] 2
Ta -6,

B

e[

i (sinf, + sinf,)

B:

This is the final expression for total magnetic field due to staright current carrying

COoONauUCtor.



f the conductor having infinite length then,

1A
91:92:5

=] 1[4 s
H (sin—+ sinij

B
2

- AT a

kel

B =
4 a

=]
_ B Tesla

B =
2ma

MFI due to circular current Carrying wire:

Consider a circular coil having radius a and centre O from which current | flows in anticlockwise
direction. The coil is placed at YZ plane so that the centre of the coil coincide along X-axis. P be
the any point at a distance x from the centre of the coil where we have to calculate the magnetic
field. let dl be the small current carrying element at any point A at a distance r from the point P
where

_» dBsin ¢
dB'sing x

T =412+ a?

The angle between r and dl is 90°. Then fron biot-savart law, the magnetic field due to current
carrying element dl is



B = Idlsin@  p- Idlsin90  p- Idl
4w 2 4m 1?2 4mr?
The direction of magnetic field is perpendicular to the plane containing dl and r. So the magnetic
field dB has two components

dBcos@ is along the Y — axis
dBsinf is along the X — axis

Similarly, consider another current carrying element dI’ which is diametrically opposite to the
point A. The magnetic field due to this current carrying element dB’ also has two components
Here both dBcosO and dB’cos6 are equal in magnitude and opposite in direction. So they cancle

each other. Similarly, the components dBsinf and dB’sinf are equal in magnitude and in same
direction so they adds up

Total magnetic field due to the circular current carrying coil at the axis is

otal magnetic field due to the circular current carrying coil at the axis is
2na . 2na s ldl a
B = dBsinf = s i
0 o 4mrer
_ i fz”" pe  Idl a s Ia Zmdl
since sin@ = —B = — = ——
r 41 (x2 + a? 1 4n 3
0 ( )(x?. + aZ)z ('1-2 + aZ)Z 0
Ue la
= ?4—7{—32na
(x% + a?)2
pe  la®
B = 5 Tesla
(x% + a?)2
This is the expression for magnetic field due to circular current carrying coil along
Tl ) | N 18 ”lilf'i I 1 L= neticrT L I 1
uo  INa?
B=— 3 Tesla



Magnetic Flux Density:
In simple matter, the magnetic flux density & related to the magnetic field intensity Z as
B=u \where # called the permeability. In particular when we consider the free space

—_—

_ _ -7
= Ho 7 \where £ = <107 Lym s the permeability of the free space. Magnetic flux density is

tra)

measured in terms of Wh/m 2 .

The magnetic flux density through a surface is given by:
= lgd;

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux
passing through the surface is equal to the charge enclosed by the surface. In case of magnetic
field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as
N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar
successively into two, we end up with pieces each having north (N) and south (S) pole as shown
in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still

we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.

M N N
S A S
N
— (5
|N? Ii\*?
L)
N — -
s s s Hor B lines

(a) {b)
Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a
straight current carrying conductor
Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6
(b), we find that these lines are closed lines, that is, if we consider a closed surface, the number

of flux lines that would leave the surface would be same as the number of flux lines that would



enter the surface.

Maxwell’s second Equation, div(B)=0:

Fromour discussions above, it is evident that for magnetic field,

—_— =+

?B.d3= 0 .

which is the Gauss's law for the magnetic field.

By applying divergence theorem, we can write:

1‘5_3’..:1?;5 =Jv§.:fv =0
Hence,......... T 20 oo (17)
Which is the Gauss's law for the magnetic fields in point form.
Ampere's Circuital Law:

Ampere's circuital law states that the line integral of the magnetic field # (circulation of H)

around a closed path is the net current enclosed by this path. Mathematically,

Hdl=1
(P I s 4)
The total current | enc can be written as,
I = !E.ds
...................................... (5)

By applying Stoke's theorem, we can write
cjﬁﬁ’d}“ = lvxﬁ.dE
g Fxﬁdé“ =Jff..:f§
Which is the Ampere's law in the point form.

Applications of Ampere's law:
We illustrate the application of Ampere's Law with some examples.

Examplel : MFI due to an infinite sheet of current and a long current carrying filament:



We compute magnetic field due to an infinitely long thin current carrying conductor as shown in
Fig. 4. Using Ampere's Law, we consider the close path to be a circle of radiés as shown in
the Fig. 4.

idi(= Idzd)

If we consider a small current element , 5 s perpendicular to the plane

containing both 44 and (= *G‘IP:'. Therefore only component of thatvill be present is

—_

H=Ha

" ey

¢ e,
By applying Ampere's law we can write,

1z

JHﬁd;a =H, 027w =1

F-1;

[
Therefore, 272 " which is same as equation (8)

Fig. 4.:Magnetic field due to an infinite thin current carrying conductor
Example2: MFI due to infinitely long coaxial conductor:
We consider the cross section of an infinitely long coaxial conductor, the inner conductor
carrying a current | and outer conductor carrying current - | as shown in figure 4.6. We compute

the magnetic field as a function of & follows:

In the region Uspih
2
L =12
R e 9)
fﬂ{ lT-":l::‘
¢ 2
2RO 2R, (10)



—{

Fig. 5: Coaxial conductor carrying equal and opposite currents

In the region &2 £ £ <&

52
fm=f—f—’oz Rﬁg
B R e (12)
_ i‘r REE_IIGE
# A, o2 ]
SRS R, (13)

Inthe region © 7 %
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UNIT - IV
Force in Magnetic fields and Magnetic Potential

Magnetic force Moving charges in a Magnetic field — Lorentz force equation
Force on a current element in a magnetic field

Force ona straight and a long current carrying conductor in a magnetic field
Force between two straight long and parallel current carrying conductors
Magnetic dipole and dipole moment

a differential current loop as a magnetic dipole

Torque on a current loop placed in a magnetic field.

Scalar Magnetic potential and its limitations

Vector magnetic potential and its properties

Vector magnetic potential due to simple configurations

Vector Poisson’s equations.

Selfand Mutual inductance — Neumann’s formulae

Determination of self-inductance of a solenoid and toroid

Mutual inductance between a straight long wire and a square loop wire in the same plane

Energy stored and density in a magnetic field.
Introduction to permanent magnets, their characteristics and applications.



Magnetic forces:

There are three ways in which the force due to magnetic fields can be experienced,
The force can be

(a} Force omn a charged particle:

We have F=0QE

This shows that if Q) is positive, F, and E are in same direction, [t is found that the
magnetic force Fp experienced by a charge Q moving with a velocity u in magnetic
field B is

Fo.-Qux B

For a moving change () in the presence of both electric and magnetic ficlds, the total
force on the charge is given by

F=F+Fn

or

F={E+u x B)

This is known as Lorentz force eguation.

(b)) Force om a current element:
To determine the force on a current element Idl of a current carrying conductor due
to the magnetic field B, we take the equation

J=P.u

We have 1d= P2 . = dp = & = gpa
oy, el

Hence

Idl= dQ.u

This shows that an elememntal charge d0) moving with velocity u (thereby producing
convection current element dQu) is eguivalent to a conduction current element Idl
Thus the force on current element is give by

dF=1dlx B

Ifthe current [ is through a closed path L oor circuit, the force on the circuwit is given
by

F= j Idi= B
L

icy Force between two current elements:

Consider the force between two elements [dly and [dh. According to biotsavarts
law, both current elements produce magnetic fields. Force didF,) on element Tpdl,
due to field dB; produced by element I; dl; as shown in figure below:



/
(~ _l ) S —~
>y S . 3
P E X d{dF,) o & ‘\
..‘ _d—»_’.-_,_ — /
/ — Lyl \
/ \ Ray [ |
|
'l(" 1 l. { /
l \ '
J \ /
J \
- J 3 N
1‘1’_/" /‘ \-_ »
N /') I. ‘\\a_.——’ i
. ’ e

l‘l(("‘[) - I]l)l X (!B;
But from biot Savarts law
ul.dl, xa,,

dB, -
: 4R,
Hence
d(dF) pd di, <\, dl, xa,,, )

4R},
This eguation is the law of force between two current elemens.

We have Fl #oli1, % ay, f"‘”l " (“’r xak, |

ar g R:,

L

Scalar Magnetic Potential and its limitations:
In studying electric field problems, we introduced the concept of electric potential that simplified
the computation of electric fields for certain types of problems. In the same manner let us relate

the magnetic field intensity to a scalar magnetic potential and write:

= e e (18)

From Ampere's law , we know that

VXH =T oo (19)

Therefore, ) = (20)

But using vector identity, Vx(¥¥7) =0 we find that ¥ = V% is valid only where J=0 . Thus

the scalar magnetic potential is defined only in the region where =9 . Moreover, Vm in
general is not a single valued function of position.
This point can be illustrated as follows. Let us consider the cross section of a

coaxial line as shown in fig 7.



Fig. 7: Cross Section of a Coaxial Line

IfVVm is the magnetic potential then,

1 a8,
o dg
_f
2T

P
Ifwe set Vm=0at ¥ Y then c=0 and 27T
, !
LAt g=g V= —d
2

We observe that as we make a complete lap around the current carrying conductor , we reach i
again but VVmthis time becomes
Vo=~ +2)
27T
We observe that value of Vm keeps changing as we complete additional laps to pass through the

same point. We introduced Vm analogous to electostatic potential V. But for static electric fields,

VxE=0 T‘E“.d}“=gv><§=0 . WxH=0
and , Whereas for steady magnetic field wherever

F=obut ¥ % 7% evenif F=onalong the path of integration.



Vector magnetic potential due to simple configurations:

We now introduce the vector magnetic potential which can be used in regions where
current density may be zero or nonzero and the same can be easily extended to time varying

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.

. = I ~ V.[Vx4)=0
Since .5 = Uand we have the vector identity that for any vector A4, ( ) , We

canwrite B =V x4

—

Here, the vector field 4 called the vector magnetic potential. Its SI unit is Whb/m.
Thus if can find 4 of a given current distribution® can be found from-A through a curl
operation. We have introduced the vector function and related its curl to . A vectof

function is defined fully in terms of its curl as well as divergence. The choice ¥ofl is made as

follows.
VXVXA=g@¥xH=pf (23)
e o e
By using vector identity, .. XA Y O A T A (24)
VA VA= (25)

Great deal of simplification can be achieved if we choose V.A=0

— Ty _ _ -
Putting ¥4~ 0 | we get Vid=-pd
In Cartesian coordinates, the above equation can be written in terms of the components as

which is vector poisson equation.

VA= T e (262)
VAL =By e (260)
Vi =M e (26¢)
The form of all the above equation is same as that of
v = -2
e @)

V=LJE¢£~V', R=[ -7
47 d R



— ar
) ) ) WA= ge— o
In case of time varying fields we shall see that dz , which is known as Lorentz

condition, V being the electric potential. Here we are dealing with static magnetic field,
SO ?ﬁ =10 .

By comparison, we can write the solution for Ax as

Computing similar solutions for other two components of the vector potential, the vector

potential can be written as

This equation enables us to find the vector potential at a given point because of a volume current

density < . Similarly for line or surface current density we can write

respectively 4;¢R .................................... (33)

The magnetic flux ¥ through a given area S is given by
L= lEdE
Substituting B=vx4
W= E[vx}id;f - cfﬁ..:f?

Vector potential thus have the physical significance that its integral around any closed path is

equal to the magnetic flux passing through that path.



Self and Mutual inductance — Neumann’s formulae:

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We
have already discussed about the parameters resistance and capacitance in the earlier chapters. In
this section, we discuss about the parameter inductance. Before we start our discussion, let us
first introduce the concept of flux linkage. If in a coil with N closely wound turns around where a

current | produces a flux @ and this flux links or encircles each of the N turns, the flux linkage

is defined as 4 . In alinear medium® = NQ, where the flux is proportional to the current, we
define the self inductance L as the ratio of the total flux linkage to the current which they link.

Lo _ N
L., oo T S (36)

To further illustrate the concept of inductance, let us consider two closed

loops C1 and C2 as shown in the figure 8, S1 and S2 are respectively the areas of C1 and C2 .

Fig:8
Ifa current 11 flows in C1 , the magnetic flux B1 will be created part of which will be linked to

C2 as shown in Figure 8:

Ina linear medium, GE is proportional to | 1. Therefore, we can write

Ba=luh (38)
where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then
M=y (39)



., the mutual inductance can be defined as the ratio of the total flux linkage of the second
circuit to the current flowing in the first circuit.

As we have already stated, the magnetic flux produced in C1 gets linked to itself and if C1 has

N1 turns then 1= My , Where 1 js the flux linkage per turn.
Therefore, self inductance

llII!‘ll
I, (or Las defined earlier) _ f_l (41)
As some of the flux produced by I1 links only to C1 & not C2.
A=W >Mdy=hy (42)
adh ah
Ly = ﬁﬂm Ly = —.::t’fll
Further in general, in a linear medium, 1 and 1

Inducrance:
Inductance is the ability of the material to hold energy in form of magnetic ficld,
L, T are inductance of material and current flowing in the material,
1 )
E=—LI"
2

Total flux linking current |

Inductance, L=
current (1)

'B'ts induced by I
Lg= [Bds

Total Flux depends on no of tums
Flux linking for n turns is "N¢".

sLmEZ—T— % N¢( depending on condition i.e total
/ Flux linking the current)

Inductance of a solenoid:
In the application of ampere’s law to solenoid we found that



= il Tesla
HNIA
;
With in a loop of N turns, the flux is linking the current N times.
. Total flux linking I = N¢
_uN'IA
/

B

!

S¢=BA

A _pN'4

! /

Some times inductors are given for unit length as well

; = u!% A

Energy stored and density in a magnetic field.
Energy stored in Magnetic Field:

So far we have discussed the inductance in static forms. In earlier chapter we discussed
the fact that work is required to be expended to assemble a group of charges and this work is
stated as electric energy. In the same manner energy needs to be expended in sending currents
through coils and it is stored as magnetic energy. Let us consider a scenario where we consider a
coil in which the current is increased from 0 to a value I. As mentioned earlier, the self

inductance of a coil in general can be written as

p-dh _yd?
i R (43a)
or. LAE=NAS i, (43b)
If we consider a time varying scenario,
LByt
dt FE e, (44)

i

We will later see that  2¢ is an induced voltage.



.'.v=.nf.E

dt is the voltage drop that appears across the coil and thus voltage opposes the
change of current.

Therefore in order to maintain the increase of current, the electric source must do an work
against this induced voltage.

AW =i dt
= Lidi

2 (Joule)
which is the energy stored in the magnetic circuit.

We can also express the energy stored in the coil in term of field quantities.
For linear magnetic circuit

w=1Mp_ 1 N
20 2T (47)
Now, R (48)
where A is the area of cross section of the coil. If l'is the length of the coil
NI = HI
W= %HBJ{LE

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit
volume is given by

_w_1
TUAL 2 (50)
In vector form
] = —
W, =—B.H
2 M3 (51)

is the energy density in the magnetic field.



UNIT -V
Time Varying Fields
Faraday’s laws of electromagnetic induction — Its integral and point forms
Maxwell’s fourth equation, Curl (E)=-dB/dt
Statically and dynamically induced EMFs — Simple problems
Displacement current

Modification of Maxwell’s equations for time varying fields



Introduction:

In our study of static fields so far, we have observed that static electric fields are produced by
electric charges, static magnetic fields are produced by charges in motion or by steady current.
Further, static electric field is a conservative field and has no curl, the static magnetic field is
continuous and its divergence is zero. The fundamental relationships for static electric fields
among the field quantities can be summarized as:

TxE=0 (1)
VD=8

For a linear and isotropic medium,
D-¢F (3)

Similarly for the magnetostatic case

VE=0 (4)
VxH=J (5
VxH=J (6)

It can be seen that for static case, the electric field vecto# and Zand magnetic field

vectors afd forrf?separate pairs.

In this chapter we will consider the time varying scenario. In the time varying case we
will observe that a changing magnetic field will produce a changing electric field and vice versa.

We begin our discussion with Faraday's Law of electromagnetic induction and then
present the Maxwell's equations which form the foundation for the electromagnetic theory.
Faraday's Law of electromagnetic Induction:

Michael Faraday, in 1831 discovered experimentally that a current was induced in a
conducting loop when the magnetic flux linking the loop changed. In terms of fields, we can say
that a time varying magnetic field produces an electromotive force (emf) which causes a current
in a closed circuit. The quantitative relation between the induced emf (the voltage that arises
from conductors moving in a magnetic field or from changing magnetic fields) and the rate of
change of flux linkage developed based on experimental observation is known as Faraday's law.

Mathematically, the induced emf can be written as



_d¢
Emf= df Volts (7)

where ? is the flux linkage over the closed path.

d¢

Anonzero dt may result due to any of the following:

(a) time changing flux linkage a stationary closed path.

(b) relative motion between a steady flux a closed path.

(c) a combination of the above two cases.

The negative sign in equation (7) was introduced by Lenz in order to comply with the
polarity of the induced emf. The negative sign implies that the induced emf will cause a current
flow in the closed loop in such a direction so as to oppose the change in the linking magnetic
flux which produces it. (It may be noted that as far as the induced emf is concerned, the closed
path forming a loop does not necessarily have to be conductive).

If the closed path is in the form of N tightly wound turns of a coil, the change in the
magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the sum of

the induced emfs of the individual turns, i.e.,

d¢
Emf= &  Volts (8)
By defining the total flux linkage as
A=Ng (9)
The emf can be written as
dA
Emf= d (10)
Continuing with equation (3), over a closed contour 'C' we can write
Emf = EFGE'Q?; (12)

where & is the induced electric field on the conductor to sustain the current.
Further, total flux enclosed by the contour 'C ' is given by

6= !Edg

(12)

Where S is the surface for which 'C' is the contour.



From (11) and using (12) in (3) we can write

Edl=-—q¢ Bds
¢ de J& (13)
By applying stokes theorem
[ VxEds = il 88 4%
5 = az (14)
Therefore, we can write
‘FXE = —E
ds (15)
which is the Faraday's law in the point form
d

We have said that non zerod$an be produced in a several ways. One particular case is when a
time varying flux linking a stationary closed path induces an emf. The emf induced in a
stationary closed path by a time varying magnetic field is called a transformer emf.

Statically and dynamically induced EMFs:

Motional EMF:
Let us consider a conductor moving in a steady magnetic field as shown in the fig 2.

=1 O

++

Fig 2
If a charge Q moves in a magnetic field :‘?t: experiences a force
F-QvxE 16
This force will cause the electrons in the conductor to drift towards one end and leave the other
end positively charged, thus creating a field and charge separation continuous until electric and

magnetic forces balance and an equilibrium is reached very quickly, the net force on the moving

conductor is zero.



=y K

] )

can be interpreted as an induced electric field which is called the motional electric
field

En =v*E (17)
If the moving conductor is a part of the closed circuit C, the generated emf around the circuit is

$ v¥Bdi _ .
g . This emf is called the motional emf.



Modification of Maxwell’s equations for time varying fields :
Ampere's circuit law states that the ling integral of tangential component
af T around a closed path is same as the net current [enc enclosed by the
path.

L.c.

[Hai=1,

By applying stoke's theorem,

]H dl becomes I J s

. Therefore, A;:-: H=J __ (3.14)
This is true in case of static EM fields.

Bul in case of time-varying ficlds, the above Ampere’s law shows same
Inconsistency,

The inconsistency of ampere law for time varying lields is shown in two cases:
1. For static EM fields, we have

AxH =J
Applying divergence on both sides, we pet,

A{A=H I =AT
But divergence of curl of a vector field is always zero.
Therefore,

A(AxH)=0=AJ
The contimuty of current equation 15 given by

P ﬁ
ot

Where J = Current density
e, = Charge density

For static fields, no current is produced, therefore, ¢ =0 = AJ=10



Implics eq. 3.15 is satisficd but for time varyving fields, current s produced
and therefore,

—de,

AJ=
at

40 (3.16)

Eq. (53.15) and eq. (3.16) are contradicting each other.

This is an inconsistency of ampere’s law and the Ampere's law must be
modified for time varying fields.

2. Consider the typical example of where the surface passes between the
capacitor plates.

The fgure s shown below.

i )

Fig 3.2 1l Two seriaces of indegration which explain the inpensisiency of Ampere's law

In fig 3.3(a),

Based on Ampere’s circuit law we get figure

i = [ras=1, =1 (3.17)
i 5



In fig 3.3(b), based the ampere’s circuit law, we get,

[Hdl = [1ds=1I,, =0 (3.18)
L 3,

Because no conduction current flows through 3,
Le. J=0

in both {a) and (b), same closcd path is used, but equations 3.17 and 3.18
are differcnt.

This is an inconsistency of Ampere’s circuit law.

This inconsistency of Ampere’s circuit law in both cases (1) and (2) can
he resolved by including displacement current in Ampere's circuit law,

Substituting in (3.19), we get,

suir=g 522 (3.21)
dt ——

This is the Maxwell equation {(based on ampere’s circuit Law) for tiem
varying fields.

In equation (3.21),
J; = Displacement current density
J = Conduction current density,

The conduction current density J involves ow of charges. The
displacement current density Jf, does not involve flow of charges.
Displacement current,

do

I,= de.d.i: - Im (3.22)



Displacement Current Density:
The cquation
Aw [ = J For static EM ficlds is modified to Modified to

AxH=l+J, (3.19)

To make the Ampere's law compatible for varying fields.
Now, applying divergence, we get
A(AxHY=0=AJ +AJ,
de,

A, == S =—"
. dr

From Gauss Law, we have
e =AD

Therefore,

= J,= (3.20)



Concept of displacementcurrent
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Figure 3.4; circuit for determing displacement carrent

Comsider the circuit of fig 3.4 in which a battery is connected to a slide
wire on which is a sliding contact ¢,

Points o and ¢ are connected through ammeters 4 and A, o a capacitance
¢ with diglectric of permittivity E.

With the capacitance ¢, no current actually flows between the plates,
although the electric ficld between the plates is increasing,

The actual phenomena that 12 happening 1= that the dielectric between the
capacitor plates are exactly the same, if a current 1, called by Maxwell, the
displacement current were really flowing between the plates.

Hence the displacement current is seemed to flow, only when the electric
field in the dielectric is changing.

The displacement current s really mtended every time the current through
a capacitance ¢ 1s given by



R
iy =

Assume ¢ is a parallel-plate capacitor,

C= % Farads where 5 = surface arca

L Ed
o ddt

20

= Ei—fj Where E is electric field

il
i =g
ib.t’ d &

. db
iy =E'S AII‘J

Therefore,

Displacement current i, — 4‘:{—?.5‘ Amp

Displacement current in parallel-plate capacitor iz same as conduction
cwrrent in the connecting wires,

Proof is given below:

Let the emf of a parallel plate capacitor along closcd path 1s,
em. f = Vosin ax

Let us congider negligible resistance in loop,

= § = woFo cosan
. The conduction current,

wiEs

J = Fa cos et

Now,



Maxwell’s fourth equation, Curl (E)=- dB/dt:

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. For

time varying case, the relationship among the field vectors written as

VE=10 (4)

In addition, from the principle of conservation of charges we get the equation of continuity

vi--22
dt
The equation must be consistent with equation of continuity

We observe that
VVxH=0=VJ (5

Since Vx4 s zero for any vector 4 .

- oL % _y
Thus ¥ * 7 =J applies only for the static case i.e., for the scenario when &
A classic example for this is given below .

Suppose we are in the process of charging up a capacitor as shown in fig 3.

Balloon shaped Amperian Loop

surlnee /
: I

Fig 3

Let us apply the Ampere's Law for the Amperian loop shown in fig 3. lenc = | is the total current
passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no current passes
through this surface and hence lenc = 0. But for non steady currents such as this one, the concept

of current enclosed by a loop is ill-defined since it depends on what surface you use. In fact



Ampere's Law should also hold true for time varying case as well, then comes the idea of
displacement current which will be introduced in the next few slides.

We can write for time varying case,

v.[vxﬁ) _o-v 728

at
-~ 4_ =
=% .J+=%D
0F (1)
e
o
................ )
e —
B (3)

The equation (3) is valid for static as well as for time varying case.Equation (3) indicates that a
oD
time varying electric field will give rise to a magnetic field even in the absence of The term %
has a dimension of current densities and is called the displacement current density.
3D
Introduction of & in Y%/ equation is one of the major contributions of Jame's Clerk

Maxwell. The modified set of equations

is known as the Maxwell's equation and this set of equations apply in the time varying scenario,

=
— [:]
static fields are being a particular case (a‘f :

In the integral form



‘[V‘?.de = cfs Dds = ‘I‘}r v (10)
?Bd}i’ =10 (11)
The modification of Ampere's law by Maxwell has led to the development of a unified
electromagnetic field theory. By introducing the displacement current term, Maxwell could
predict the propagation of EM waves. Existence of EM waves was later demonstrated by Hertz

experimentally which led to the new era of radio communication.
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